Dumb.com >> Jokefight >> Vote >> >>
Vote For Your Favorite Joke

I can't decide!

On The Job Wisdom
1. If you do a good job and work hard, you may get a job with a better company someday.

2. The light at the end of the tunnel has been turned off due to budget cuts.

3. Sure, you may not like working here, but we pay your rent.

4. Rome did not create a great empire by having meetings -- they did it by killing all those who opposed them.

5. A person who smiles in the face of adversity probably has a scapegoat.

6. If at first you don't succeed--try management.

7. Never put off until tomorrow what you can avoid altogether.

8. Never quit until you have another job.

9. Hang in there: Retirement is only 30 years away!

10. Go the extra mile--It makes your boss look like an incompetent slacker.

11. Pride, commitment, teamwork--words we use to get you to work for free.

12. Work: It isn't just for sleeping anymore.

13. There are two kinds of people in life: people who like their jobs, and people who don't work here anymore.

The Student and The Barometer

Some time ago I received a call from a colleague. He was about to give a student a zero for his answer to a physics question, while the student claimed a perfect score. The instructor and the student agreed to an impartial arbiter, and I was selected.

I read the examination question: "Show how it is possible to determine the height of a tall building with the aid of a barometer." The student had answered: "Take the barometer to the top of the building, attach a long rope to it, lower it to the street, and then bring it up, measuring the length of the rope. The length of the rope is the height of the building."

The student really had a strong case for full credit since he had really answered the question completely and correctly! On the other hand, if full credit were given, it could well contribute to a high grade in his physics course and certify competence in physics, but the answer did not confirm this.

I suggested that the student have another try. I gave the student six minutes to answer the question with the warning that the answer should show some knowledge of physics. At the end of five minutes, he hadn't written anything. I asked if he wished to give up, but he said he had many answers to this problem; he was just thinking of the best one. I excused myself for interrupting him and asked him to please go on.

In the next minute, he dashed off his answer, which read: "Take the barometer to the top of the building and lean over the edge of the roof. Drop the barometer, timing its fall with a stopwatch. Then, using the formula x=0.5*a*t^2, calculate the height of the building." At this point, I asked my colleague if he would give up. He conceded, and gave the student almost full credit.

While leaving my colleague's office, I recalled that the student had said that he had other answers to the problem, so I asked him what they were. "Well," said the student, "there are many ways of getting the height of a tall building with the aid of a barometer. For example,if the sun is shining you could measure the height of the barometer, then set it on end and measure the length of its shadow. Then you measure the length of the skyscraper's shadow, and thereafter it is a simple matter of proportional arithmetic to work out the height of the skyscraper.

"Fine," I said, "and others?"

"Yes," said the student, "there is a very basic measurement method you will like. In this method, you take the barometer and begin to walk up the stairs. As you climb the stairs, you mark off the length of the barometer along the wall. You then count the number of marks, and this will give you the height of the building in barometer units." "A very direct method."

"Of course. If you want a more sophisticated method, you can tie the barometer to the end of a string, swing it as a pendulum, and determine the value of g [gravity] at the street level and at the top of the building. From the difference between the two values of g, the height of the building, in principle, can be calculated."

"On this same tack, you could take the barometer to the top of the building, attach a long rope to it, lower it to just above the street, and then swing it as a pendulum. You could then calculate the height of the building by the period of the precession".

"Finally," he concluded, "there are many other ways of solving the problem. Probably the best," he said, "is to take the barometer to the basement and knock on the superintendent's door. When the superintendent answers, you speak to him as follows: 'Mr. Superintendent, here is a fine barometer. If you will tell me the height of the building, I will give you this barometer."

At this point, I asked the student if he really did not know the conventional answer to this question. He admitted that he did, but said that he was fed up with high school and college instructors trying to teach him how to think.

The name of the student was Niels Bohr, who later received the Nobel prize for Physics.



Thank you for your vote!


You can see the results below:


  • All the same won 50.72% of the times
  • A large difference won 50.60% of the times